Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171790, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508253

RESUMO

Fenvalerate (FEN), a type II pyrethroid pesticide, finds extensive application in agriculture, graziery and public spaces for pest control, resulting in severe environmental pollution. As an environmental endocrine disruptor with estrogen-like activity, exposure to FEN exhibited adverse effects on ovarian functions. Additionally, the presence of the metabolite of FEN in women's urine shows a positive association with the risk of primary ovarian insufficiency (POI). In mammals, the primordial follicle pool established during the early life serves as a reservoir for storing all available oocytes throughout the female reproductive life. The initial size of the primordial follicle pool and the rate of its depletion affect the occurrence of POI. Nevertheless, there is very limited research about the impact of FEN exposure on primordial folliculogenesis. In this study, pregnant mice were orally administrated with 0.2, 2.0 and 20.0 mg/kg FEN from 16.5 to 18.5 days post-coitus (dpc). Ovaries exposed to FEN exhibited the presence of large germ-cell cysts that persist on 1 days post-parturition (1 dpp), followed by a significant reduction in the total number of oocytes in pups on 5 dpp. Moreover, the levels of m6A-RNA and its associated proteins METTL3 and YTHDF2 were significantly increased in the ovaries exposed to FEN. The increased YTHDF2 promoted the assembly of the cytoplasmic processing bodies (P-body) in the oocytes, accompanied with altered expression of transcripts. Additionally, when YTHDF2 was knocked-down in fetal ovary cultures, the primordial folliculogenesis disrupted by FEN exposure was effectively restored. Further, the female offspring exposed to FEN displayed ovarian dysfunctions reminiscent of POI in early adulthood, characterized by decreases in ovarian coefficient and female hormone levels. Therefore, the present study revealed that exposure to FEN during late pregnancy disrupted primordial folliculogenesis by YTHDF2-mediated P-body assembly, causing enduring adverse effects on female fertility.


Assuntos
Nitrilas , Reserva Ovariana , Piretrinas , Humanos , Gravidez , Animais , Feminino , Camundongos , Adulto , Animais Recém-Nascidos , Corpos de Processamento , Oócitos/metabolismo , Piretrinas/toxicidade , Piretrinas/metabolismo , Mamíferos/metabolismo , Metiltransferases , Proteínas de Ligação a RNA
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166762, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37295480

RESUMO

Decidualization is a critical process for successful pregnancy. Disorders in this process are tightly associated with adverse pregnancy outcomes including spontaneous abortion. However, the potential molecular mechanisms of lncRNAs underlying this process are yet to be fully elucidated. In this study, we utilized RNA sequencing (RNA-seq) to identify differentially expressed lncRNAs during endometrial decidualization with a pregnant mouse model. Based on RNA-seq analysis, weighted gene co-expression network analysis (WGCNA) was performed to construct the lncRNA-mRNA co-expression network and to identify decidualization-associated hub lncRNAs. Through comprehensive screening and validation, we identified a novel lncRNA, RP24-315D19.10 and studied its function in primary mouse endometrial stromal cells (mESCs). lncRNA RP24-315D19.10 was highly expressed during decidualization. Knockdown of RP24-315D19.10 significantly inhibited mESCs decidualization in vitro. Mechanistically, RNA pull-down and RNA immunoprecipitation assays indicated that cytoplasmic RP24-315D19.10 could bind to hnRNPA2B1, thereby upregulating hnRNPA2B1 expression. Site-directed mutagenesis followed by biolayer interferometry analysis additionally illustrated that hnRNPA2B1 protein specifically bound to the ~-142ccccc~-167 region of the RP24-315D19.10 sequence. hnRPA2B1 deficiency impairs mESCs decidualization in vitro and we found that the inhibition in decidualization caused by RP24-315D19.10 knockdown was rescued by hnRNPA2B1 overexpression. Moreover, the expression of hnRNPA2B1 in spontaneous abortion women with deficient decidualization was significantly lower than that in healthy individuals, suggesting that hnRNPA2B1 may be involved in the development and progression of spontaneous abortion caused by decidualization failure. Collectively, our study indicates RP24-315D19.10 is a critical regulator for endometrial decidualization and RP24-315D19.10-regulated hnRNPA2B1 might be a new mark of decidualization-related spontaneous abortion.


Assuntos
Aborto Espontâneo , RNA Longo não Codificante , Animais , Feminino , Humanos , Camundongos , Gravidez , Aborto Espontâneo/genética , Aborto Espontâneo/metabolismo , Decídua/metabolismo , Endométrio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Cima , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo
3.
Food Chem Toxicol ; 178: 113861, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277016

RESUMO

Female reproductive lifespan is largely determined by the size of the primordial follicle pool, which is established in early life. Dibutyl phthalate (DBP), a popular plasticiser, is a known environmental endocrine disruptor that poses a potential threat to reproductive health. However, DBP impact on early oogenesis has been rarely reported. In this study, maternal exposure to DBP in gestation disrupted germ-cell cyst breakdown and primordial follicle assembly in foetal ovary, impairing female fertility in adulthood. Subsequently, altered autophagic flux with autophagosome accumulation was observed in DBP-exposed ovaries carrying CAG-RFP-EGFP-LC3 reporter genes, whereas autophagy inhibition by 3-methyladenine attenuated the impact of DBP on primordial folliculogenesis. Moreover, DBP exposure reduced the expression of NOTCH2 intracellular domain (NICD2) and decreased interactions between NICD2 and Beclin-l. NICD2 was observed within the autophagosomes in DBP-exposed ovaries. Furthermore, NICD2 overexpression partially restored primordial folliculogenesis. Furthermore, melatonin significantly relieved oxidative stress, decreased autophagy, and restored NOTCH2 signalling, consequently reversing the effect on folliculogenesis. Therefore, this study demonstrated that gestational DBP exposure disrupts primordial folliculogenesis by inducing autophagy, which targets NOTCH2 signalling, and this impact has long-term consequences on fertility in adulthood, strengthening the potential contribution of environmental chemicals to the development of ovarian dysfunctional diseases.


Assuntos
Dibutilftalato , Folículo Ovariano , Animais , Feminino , Camundongos , Autofagia , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Ovário , Plastificantes/metabolismo , Receptor Notch2/química , Receptor Notch2/metabolismo
4.
Biol Direct ; 18(1): 30, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312207

RESUMO

BACKGROUND: Two-dimensional ultrathin Ti3C2 nanosheets are increasingly being used in biomedical applications owing to their special physicochemical properties. But, the biological effects of its exposure on the reproductive system is still unclear. This study evaluated the reproductive toxicity of Ti3C2 nanosheets in the testes. RESULTS: Ti3C2 nanosheets at doses of 2.5 mg/kg bw and 5 mg/kg bw in mice caused defects in spermatogenic function, and we also clarified an underlying molecular mechanism of it in vivo and in vitro model. Ti3C2 nanosheets induced an increase of reactive oxygen species (ROS) in testicular and GC-1 cells, which in turn led to the imbalance in oxidative and antioxidant systems (also known as oxidative stress). Additionally, oxidative stress often induces cellular DNA strand damages via the oxidative DNA damages, which triggered cell cycle arrest in the G1/G0 phase, leading to cell proliferation inhibition and irreversible apoptosis. ATM/p53 signaling manifest key role in DNA damage repair (DDR), and we demonstrate that ATM/p53 signaling was activated, and mediated the toxic damage process caused by Ti3C2 nanosheet exposure. CONCLUSION: Ti3C2 nanosheet-induced disruption of proliferation and apoptosis of spermatogonia perturbed normal spermatogenic function that was mediated by ATM/p53 signaling pathway. Our findings shed more light on the mechanisms of male reproductive toxicity induced by Ti3C2 nanosheets.


Assuntos
Titânio , Proteína Supressora de Tumor p53 , Masculino , Animais , Camundongos , Titânio/toxicidade , Espermatogênese , Transdução de Sinais
5.
Ecotoxicol Environ Saf ; 251: 114531, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641866

RESUMO

The environmental pollutant Benzo(a)pyrene (BaP) has an adverse effect on the reproductive performance of mammals. We previously showed that BaP treatment during early pregnancy damages endometrial morphology and impairs embryo implantation. Endometrial decidualization at the implantation site (IS) after embryo implantation is crucial for pregnancy maintenance and placental development. The balance between proliferation and differentiation in endometrial stromal cells (ESCs) is a crucial event of decidualization, which is regulated by the cell cycle. Here, we report that abnormal decidualization caused by BaP is associated with cell cycle disturbance of stromal cells. The mice in the treatment group were gavaged with 0.2 mg/kg/day BaP from day 1-8 of pregnancy, while those in control were gavaged with corn oil in parallel. BaP damaged the decidualization of ESCs and reduced the number of polyploid cells. Meanwhile, BaP up-regulated the expression of Ki67 and PCNA, affecting the differentiation of stromal cells. The cell cycle progression analysis during decidualization in vivo and in vitro showed that BaP induced polyploid cells deficiency with enhanced expressions of CyclinA(E)/CDK2, CyclinD/CDK4 and CyclinB/CDK1, which promote the transformation of cells from G1 to S phase and simultaneously activate the G2/M phase. The above results indicated that BaP exposure accelerates cell cycle progression, promotes ESC proliferation, inhibits differentiation, and impedes proper decidualization and polyploidy development. Thus, the imbalance of ESC proliferation and differentiation would be an important mechanism for BaP-induced defective decidualization.


Assuntos
Benzo(a)pireno , Decídua , Gravidez , Camundongos , Feminino , Animais , Decídua/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Placenta , Diferenciação Celular , Proliferação de Células , Células Estromais/metabolismo , Poliploidia , Mamíferos
6.
Cell Biol Toxicol ; 39(3): 1077-1098, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34773530

RESUMO

Uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects. Recent advances in molecular technologies have allowed the unprecedented mapping of epigenetic modifications during embryo implantation. DNA methyltransferase 3a (DNMT3A) and DNMT3B are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. It was reported that conditional knockout of Dnmt3a in the uterus does not markedly affect endometrial function during embryo implantation, but the tissue-specific functions of Dnmt3b in the endometrium during embryo implantation remain poorly understood to investigate the role of Dnmt3b during peri-implantation period. Here, we generated Dnmt3b conditional knockout (Dnmt3bd/d) female mice using progesterone receptor-Cre mice and examined the role of Dnmt3b during embryo implantation. Dnmt3bd/d female mice exhibited compromised fertility, which was associated with defective decidualization, but not endometrial receptivity. Furthermore, results showed loss of Dnmt3b did not lead to altered genomic methylation patterns of the decidual endometrium during early pregnancy. Transcriptome sequencing analysis of uteri from day 6 pregnant mice identified phosphoglycerate kinase 1 (Pgk1) as one of the most variable genes in Dnmt3bd/d decidual endometrium. Potential roles of PGK1 in the decidualization process during early pregnancy were confirmed. Lastly, the compromised decidualization upon the downregulation of Dnmt3b could be reversed by overexpression of Pgk1. Collectively, our findings indicate that uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects.


Assuntos
Decídua , Útero , Animais , Feminino , Camundongos , Gravidez , Decídua/fisiologia , Metilação de DNA/genética , Implantação do Embrião/fisiologia , Endométrio/metabolismo , DNA Metiltransferase 3B
7.
Food Chem Toxicol ; 169: 113382, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116546

RESUMO

Beta-cypermethrin (ß-CYP) is a highly effective broad-spectrum insecticide that can potentially affect female reproduction. However, little is known about the effect of ß-CYP on uterine decidualisation, which is a vital process by which the uterus provides a suitable microenvironment for pregnancy maintenance. Therefore, we focused on the effect and mechanism of ß-CYP on endometrial decidualisation during early pregnancy in mice. The results indicated that the expression levels of HOXA10, BMP2, and IGFBP1 was significantly downregulated in the decidual tissue and primary endometrial stromal cells of pregnant and pseudopregnant mice following ß-CYP treatment. Serum E2 concentration was significantly increased, whereas P4 concentration and oestrogen receptor (ERα) and progesterone receptor (PRA) expression were significantly downregulated following ß-CYP exposure. The number of polyploid decidual cells was lower in the ß-CYP-treated group. Furthermore, ß-CYP significantly downregulated the protein expression levels of CDK4 and CDK6, and the mRNA expression levels of cyclin D3 and p21. The number of foetuses per female in the first litter was markedly reduced following exposure to ß-CYP. In summary, early pregnancy exposure to ß-CYP may result in defective endometrial decidualisation via compromised proliferation of uterine stromal cells and reduced expressions of cyclin D3, CDK4/6, and p21 in mice.


Assuntos
Decídua , Inseticidas , Lesões Pré-Natais , Piretrinas , Animais , Feminino , Camundongos , Gravidez , Ciclina D3/metabolismo , Regulação para Baixo , Receptor alfa de Estrogênio/metabolismo , Inseticidas/toxicidade , Piretrinas/toxicidade , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , RNA Mensageiro , Lesões Pré-Natais/induzido quimicamente , Decídua/efeitos dos fármacos , Decídua/patologia
8.
Chem Biol Interact ; 365: 110085, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35940284

RESUMO

Benzo(a)pyrene (BaP) is a well-known environmental endocrine pollutant, which has ovarian toxicity in mammals. Ovarian corpus luteum (CL), as the main source of progesterone synthesis in early pregnant female, requires a large number of mitochondria for energy supply. We previously demonstrated that BaP and its metabolite benzo(a)pyren-7, 8-dihydrodiol-9, 10-epoxide (BPDE) inhibited the ovarian melatonin receptors (MTRs) expression and decreased the levels of estrogen and progesterone during early pregnancy in mice. Emerging researches show that MTRs also exist on mitochondrial membrane and participate in the regulation of mitochondrial function. However, the relationship between BaP, MTRs on mitochondrial membrane and mitochondrial function remains unknown. Consequently, this study focuses on the effect and potential mechanism of BaP on ovarian luteal mitochondrial function during early pregnancy. We found that BaP and its metabolite BPDE decreased MTRs in early pregnant CL and luteinized KGN cells, especially in mitochondria. Furthermore, BaP or BPDE up-regulated the expression of SIRT3, Mfn2 and Drp-1, damaged mitochondrial morphology and decreased the MMP and the ATP levels, thereby causing mitochondrial dysfunction. Notably, activation of the MTRs on mitochondrial membrane by MTRs agonist ramelteon partially alleviated BPDE-induced up-regulation of SIRT3, Mfn2 and Drp-1, reduced mitochondrial fragmentation and enhanced the MMP and the ATP levels, thus restoring the expression of steroid rate-limiting enzymes. Together, these findings firstly proved that BaP and BPDE down-regulate MTRs on mitochondrial membrane, and further injure mitochondrial function in early pregnant rats' CL, which provides a new insight for understanding the exact mechanism of the BaP-induced ovarian toxicity.


Assuntos
Poluentes Ambientais , Sirtuína 3 , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Benzo(a)pireno/farmacologia , Corpo Lúteo/metabolismo , Poluentes Ambientais/metabolismo , Feminino , Mamíferos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Gravidez , Progesterona/metabolismo , Ratos , Receptores de Melatonina/metabolismo , Sirtuína 3/metabolismo
9.
Food Chem Toxicol ; 165: 113128, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35569596

RESUMO

Ti3C2 MXene, as a novel nanomaterial, has attracted great attention due to its promising properties in biomedical applications. However, the potential effects of Ti3C2 MXene on trophoblast functions have not been investigated. Here, we found that Ti3C2 MXene exposure weakened the extension ability of villus explants in vitro. We employed human trophoblast HTR-8/SVneo cells to reveal the underlying molecular mechanisms by which Ti3C2 MXene exposure affected trophoblast functions. Results showed that Ti3C2 MXene entered cells and mostly deposited in the cytoplasm, inhibiting cell migration and invasion abilities. Furthermore, we found that Ti3C2 MXene exposure elevated autophagy through the inhibition of the PI3K/AKT/mTOR pathway. Meanwhile, the application of an autophagy inhibitor (3-MA) prevented autophagy and restored cell viability, resulting in the recovery of cell migration and invasion abilities. These indicated that the cellular dysfunction induced by Ti3C2 MXene may be mediated by autophagy activation. Our results indicated that autophagy is a key factor in eliciting HTR-8/SVneo dysfunction after Ti3C2 MXene exposure, which could therefore damage placental development. Autophagy inhibition is a potential therapeutic strategy for alleviating the placental toxicity of nanoparticles.


Assuntos
Titânio , Trofoblastos , Autofagia , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Placenta/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Titânio/farmacologia
10.
Front Cell Dev Biol ; 9: 669732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150762

RESUMO

The association between the accumulation of synthetic chemicals with estrogenic activity and risks to oogenesis has become a growing concern. This study indicates that in utero estrogen exposure can affect homologous recombination in early oogenesis and influence the reproductive potential and lifespan of female offspring. We conducted this study in developing mouse ovaries using two different models: oral doses administered to the mother, and fetal ovary cultures. Our analyses of meiotic fetal oocytes suggest that 17-ß-estradiol induces gross aberrations in prophase I events, including delayed meiotic progression, increased unrepaired DNA damage, and altered homologous recombination levels. These effects were mainly mediated by estrogen receptor 2 (ESR2) activation. Mid-gestation exposure to estrogen also led to delayed primordial folliculogenesis after birth, impaired follicle development after prepuberty, and ultimately reduced the total litter size of the offspring. This raises the concern that maternal exposures to substances activating ESR2 may compromise the fertility of the exposed female fetus.

11.
Ann Transl Med ; 9(10): 887, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34164521

RESUMO

BACKGROUND: Obesity is associated with many adverse effects on female fertility. Obese women have a higher likelihood of developing ovulatory dysfunction due to dysregulation of the hypothalamic-pituitary-ovarian axis. However, the effect of obesity on ovarian function during early pregnancy needs to be further assessed. METHODS: C57BL6/J mice were given a high-fat diet (HFD) for 12 weeks to induce obesity. An in vitro high-fat model was established by treating the human ovarian granulosa cell line KGN with oleic acid and palmitic acid. Ovarian morphology of obese mice in early pregnancy was assessed by hematoxylin and eosin staining and ovarian function was assessed by enzyme-linked immunosorbent assay, western blotting, and immunohistochemistry. Oil Red O staining and transmission electron microscopy were used to detect fatty acid accumulation. Specific markers relating to the ovarian functional mechanism were assessed by real-time PCR, western blotting, lactate detection, adenosine triphosphate (ATP) detection, biochemical analyses, and enzyme-linked immunosorbent assay. RESULTS: The results of this study showed that during early pregnancy, the number of corpus lutea, serum estradiol and progesterone levels, and the expression of the steroid biosynthesis-related protein CYP19A1 (aromatase), CYP11A1 (cholesterol side chain cleavage enzyme), and StAR (steroidogenic acute regulatory protein), were significantly increased in HFD mice. Mice fed an HFD also showed a significant increase in ovarian lipid accumulation on day 7 of pregnancy. Genes involved in fatty acid synthesis (Acsl4 and Elovl5), and fatty acid uptake and transport (Slc27a4), together with the ß-oxidation rate-limiting enzyme Cpt1a, were significantly upregulated in HFD mice. Specifically, there was abnormal elevation of ATP and aberrant expression of tricarboxylic acid cycle (TCA)- and electron transport chain (ETC)-related genes in the ovaries of pregnant HFD mice. KGN cells treated with etomoxir targeting ß-oxidation of fatty acid showed decreased TCA cycle and ETC related gene expression. The elevation of ATP and estradiol and progesterone levels was reversed. CONCLUSIONS: During early pregnancy, HFD-induced obesity increases fatty acid ß-oxidation, which in turn increases TCA cycle and ETC related gene expression, leading to increased ATP production and ovarian dysfunction.

12.
FASEB J ; 35(7): e21731, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34131963

RESUMO

Successful embryo implantation requires well-functioning endometrial luminal epithelial cells to establish uterine receptivity. Inadequate uterine receptivity is responsible for approximately two thirds of implantation failures in humans. However, the regulatory mechanism governing this functional process remains largely unexplored. A previous study revealed that the expression of Rictor, the main member of mTORC2, in mouse epithelial cells is increased on the fourth day of gestation (D4). Here, we provide the first report of the involvement of Rictor in the regulation of endometrial receptivity. Rictor was conditionally ablated in the mouse endometrium using a progesterone receptor cre (PRcre ) mouse model. Loss of Rictor altered polarity remodeling and the Na+ channel protein of endometrial cells by mediating Rac-1/PAK1(pPAK1)/ERM(pERM) and Sgk1/pSgk1 signaling, respectively, ultimately resulting in impaired fertility. In the endometrium of women with infertility, the expression of Rictor was changed, along with the morphological transformation and Na+ channel protein of epithelial cells. Our findings demonstrate that Rictor is crucial for the establishment of uterine receptivity in both mice and humans. The present study may help improve the molecular regulatory network of endometrial receptivity and provide new diagnostic and treatment strategies for infertility.


Assuntos
Endométrio/metabolismo , Células Epiteliais/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Implantação do Embrião/fisiologia , Feminino , Fertilidade/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Progesterona/metabolismo , Transdução de Sinais/fisiologia , Útero/metabolismo , Adulto Jovem
13.
J Appl Toxicol ; 41(11): 1732-1746, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34101200

RESUMO

Ethylparaben (EtP) and propylparaben (PrP) are common preservatives and well-known endocrine-disrupting chemicals. Studies have demonstrated that they can reduce female fertility, but the underlying mechanism, especially that on embryo implantation, is still poorly understood. Endometrial decidualization is a critical event for embryo implantation. In this study, we aimed to explore the effects of EtP/PrP on endometrial decidualization. Pregnant mice were dosed daily by oral gavage with EtP at 0, 400, 800 and 1600 mg/kg or with PrP at 0, 625, 1250 and 2500 mg/kg from Day 1 of pregnancy until sacrifice. The results showed that the rate of pregnant mice with impaired embryo implantation, whose number of implantation sites was less than 7, was significantly increased after exposure to 1600 mg/kg EtP or 2500 mg/kg PrP. Further study found that the expression of endometrial decidualization markers HOXA10, MMP9 and PR was significantly downregulated in 1600 mg/kg EtP group and 2500 mg/kg PrP group. Notably, serum oestrogen and progesterone levels were significantly increased, whereas the expression of uterine oestrogen receptor and progesterone receptor was decreased following 1600 mg/kg EtP or 2500 mg/kg PrP exposure. In the breeding test, fewer offspring were found after females were exposed to 1600 mg/kg EtP or 2500 mg/kg PrP in early pregnancy. This demonstrated that exposure to EtP/PrP interfered with embryo implantation by compromising endometrial decidualization in early-stage pregnant mice. Disorders of reproductive hormones and hormone receptor signals could be responsible for impaired decidualization. This study broadened the understanding on the biological safety of EtP and PrP.


Assuntos
Implantação do Embrião/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Endométrio/efeitos dos fármacos , Parabenos/toxicidade , Conservantes Farmacêuticos/toxicidade , Animais , Feminino , Camundongos , Gravidez
14.
ACS Appl Mater Interfaces ; 13(24): 27856-27867, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110146

RESUMO

Combining photodynamic therapy (PDT), chemodynamic therapy (CDT), and ferroptosis is a valuable means for an enhanced anticancer effect. However, traditional combination of PDT/CDT/ferroptosis faces several hurdles, including excess glutathione (GSH) neutralization and preparation complexity. In this work, a versatile multifunctional nanoparticle (HCNP) self-assembled from two porphyrin molecules, chlorin e6 and hemin, is developed. The as-constructed HCNPs exhibit a peroxidase-mimic catalytic activity, which can lead to the in situ generation of endogenous O2, thereby enhancing the efficacy of PDT. Furthermore, the generation of hydroxyl radicals (•OH) in the tumor environment in reaction to the high level of H2O2 and the simultaneous disruption of intracellular GSH endow the HCNPs with the capacity of enhanced CDT, resulting in a more effective therapeutic outcome in combination with PDT. More importantly, GSH depletion further leads to the inactivation of GSH peroxide 4 and induced ferroptosis. Both in vitro and in vivo results showed that the combination of PDT/CDT/ferroptosis realizes highest antitumor efficacy significantly under laser irradiation. Therefore, by integrating the superiorities of O2 and •OH generation capacity, GSH-depletion effect, and bioimaging into a single nanosystem, the HCNPs are a promising single therapeutic agent for tumor PDT/CDT/ferroptosis combination therapy.


Assuntos
Antineoplásicos/uso terapêutico , Hemina/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Catálise , Linhagem Celular Tumoral , Clorofilídeos , Feminino , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Hemina/química , Hemina/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana , Humanos , Radical Hidroxila/metabolismo , Luz , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/efeitos da radiação , Oxigênio/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas/química , Porfirinas/efeitos da radiação
15.
J Appl Toxicol ; 41(12): 2031-2041, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34014586

RESUMO

p-Phenylenediamine (PPD) is the main constituent of permanent hair dye and is also widely used in the photographic and rubber industries. PPD and its metabolites have been shown to increase the risk of cancer (especially ovarian cancer); however, their effect on female reproduction is unclear. We investigated the effects of the PPD metabolite N-monoacetyl-PPD (MAPPD) on mouse blastocyst development and ovarian function. Sixty 8-week-old female Kunming mice were administered at 0-, 100-, and 300-mg/kg/day MPPD by gavage for 28 days. KGN (human ovarian granulosa cells) were treated with MAPPD at concentrations of 0, 50, 100, and 300 µg/ml for 48 h. The number of abnormal blastocysts increased on gestation day 3.5 in all treatment groups. Compared with the control group, in MAPPD exposed group, the number of antral follicles decreased, the levels of E2 and P4 decreased in ovarian tissue, the serum levels of E2 , P4 , luteinizing hormone (LH), and T decreased, and follicle-stimulating hormone (FSH) increased. The expression of FSH receptor (FSHR) and LH receptor (LHR) was significantly downregulated, and the level of oxidative stress was significantly increased. In KGN cells, the level of reactive oxygen species increased in a dose-dependent manner, and the mRNA levels of FSHR, LHR, and aromatase increased. These results suggest that MAPPD inhibits FSH- and LH-induced aromatase activity by causing oxidative stress, which decrease hormone levels, leading to abnormal follicle development. Meanwhile, MAPPD exposure could affect early embryonic development abnormalities by affecting the quality of ovum.


Assuntos
Corantes/toxicidade , Ovário/efeitos dos fármacos , Fenilenodiaminas/toxicidade , Animais , Animais não Endogâmicos , Relação Dose-Resposta a Droga , Feminino , Células da Granulosa/efeitos dos fármacos , Camundongos , Ovário/fisiopatologia
16.
Environ Sci Pollut Res Int ; 28(31): 42024-42036, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33792845

RESUMO

Butylated hydroxytoluene (BHT), one of the most widely used synthetic phenolic antioxidants, is a popular food additive. Previous studies have reported the possible health hazards of BHT. However, BHT effects on female reproduction, especially on endometrial decidualization, are still unknown. During early pregnancy, decidualization plays important roles for embryo implantation and pregnancy establishment. This study aimed to explore the effects of BHT on endometrial decidualization in pregnant mice. The pregnant mice received BHT via intraperitoneal injection at doses of 0, 200, and 400 mg/kg/day from day 1 (D1) of pregnancy until sacrifice. Under BHT exposure, maternal body weight was significantly decreased during early pregnancy. Compared with the control group, the number of implantation sites and uterine weight were significantly reduced in the BHT groups. The uterine lumen failed to close after BHT exposure, and the decidual morphology of endometrial stromal cells was inhibited by BHT. Furthermore, BHT significantly decreased the expression of endometrial decidual markers including COX2, HOXA10, and MMP9. Notably, the levels of serum estrogen (E2) and progesterone (P4) and expression levels of uterus estrogen receptor α (ERα) and progesterone receptor (PR) during early pregnancy were significantly upregulated following BHT exposure. In conclusion, these results demonstrated that gestational BHT exposure could inhibit decidualization of mouse endometrium during early pregnancy. The disorders of reproductive hormones and changes of hormone receptor signals could be responsible for the impaired decidualization. This study provided new evidence for the deleterious effects of BHT on female reproduction and revealed the potential reproductive toxicity of synthetic phenolic antioxidants.


Assuntos
Hidroxitolueno Butilado , Decídua , Animais , Implantação do Embrião , Endométrio , Feminino , Camundongos , Gravidez , Progesterona
17.
Ecotoxicol Environ Saf ; 207: 111561, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254415

RESUMO

Benzo(a)pyrene (B(a)P) is a widespread persistent organic pollutant (POP) and a well-known endocrine disruptor. Exposure to BaP is known to disrupt the steroid balance and impair embryo implantation, but the mechanism under it remains unclear. The corpus luteum (CL), the primary source of progesterone during early pregnancy, plays a pivotal role in embryo implantation and pregnancy maintenance. The inappropriate luteal function may result in implantation failure and spontaneous abortions. Therefore, this study was conducted to assess the effects and potential mechanisms of B(a)P on the CL function. Our results showed that pregnant mice received B(a)P displayed impaired embryo implantation and dysfunction of ovarian CL. The estrogen and progesterone levels decreased by B(a)P. In vitro, exposure to BPDE, which is the metabolite of B(a)P, affected the luteinization of granular cell KK-1. Additionally, melatonin and its receptors, which are important for ovarian function and anti-oxidative damage, were affected by B(a)P or BPDE. B(a)P or BPDE-treated alone impaired antioxidant capacity of ovarian granulosa cells, caused an increasing of ROS and cell apoptosis, and disrupted the PI3K/AKT/GSK3ß signaling pathway in vivo and in vitro. Co-treatment with melatonin alleviated B(a)P or BPDE-induced CL dysfunction by ameliorating oxidative stress, counteracting phosphorylation of PI3K/AKT/GSK3ß signaling pathway, decreasing the apoptosis of the ovarian cells. Moreover, activation of the melatonin receptor by ramelteon in KK-1 cells exhibits an analogous protective effect as melatonin. In conclusion, our findings not only firstly clarify the potential mechanisms of BaP-induced CL dysfunction, but also extend the understanding about the ovarian protection of melatonin and its receptors against B(a)P exposure.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Corpo Lúteo/fisiologia , Melatonina/farmacologia , Animais , Antioxidantes/metabolismo , Benzo(a)pireno/metabolismo , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/metabolismo , Disruptores Endócrinos/metabolismo , Feminino , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Progesterona/metabolismo
18.
J Mol Med (Berl) ; 98(4): 555-567, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32072231

RESUMO

Embryo implantation is an essential and complex process in mammalian reproduction. However, little evidence has indicated the involvement of autophagy during embryo implantation. To determine the possible role of autophagy in uterine of pregnant mice during the peri-implantation stage, we first examined the expression of autophagy-related markers ATG5 and LC3 on day 4, 5, and 6 of pregnancy (D4, D5, and D6, respectively). Compared with expression on D4, downregulation of the autophagy-related markers was observed on D5 and D6, the days after the embryo attached to the receptivity endometrium. Further examination showed that autophagy-related markers ATG5, ATG12, LC3, cathepsin B, and P62 at the implantation site were significantly decreased when comparing with the inter-implantation site. Fewer number of autophagosomes at the implantation site were also observed by transmission electron microscopy. To confirm the functional role of autophagy during embryo implantation in mice, we administered the autophagy inhibitor 3-methyladenine and chloroquine to mice. After treated with 3-methyladenine, the expression of decidual markers HOXA10 and progesterone receptor were significantly reduced. Furthermore, a reduction in implantation sites and increase in the HOXA10 and PR protein levels were observed in response to chloroquine treatment. In addition, impaired uterine decidualization and dysregulation of the PR and HOXA10 protein levels was observed after autophagy inhibited by 3-methyladenine and chloroquine in in vivo artificial decidualization mouse model. In the last, LC3 and P62 were also observed in normal human proliferative, secretory, and decidua tissues. In conclusion, endometrial autophagy may be essential for embryo implantation, and it may be associated with endometrial decidualization during early pregnancy. KEY MESSAGE: • Autophagy-related markers were significantly decreased at implantation site. • Autophagy inhibition results in abnormal decidualization. • Autophagy is essential for embryo implantation.


Assuntos
Autofagia , Implantação do Embrião , Endométrio/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Biomarcadores , Decídua/metabolismo , Decídua/ultraestrutura , Endométrio/ultraestrutura , Feminino , Imunofluorescência , Imuno-Histoquímica , Masculino , Camundongos , Gravidez
19.
Environ Pollut ; 259: 113915, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32023792

RESUMO

Benzo [a]pyrene (BaP) is a well-known endocrine disruptor. Exposure to BaP is known to impair embryo implantation. The corpus luteum (CL), the primary source of progesterone during early pregnancy, plays a pivotal role in embryo implantation and pregnancy maintenance. The inappropriate luteal function may result in implantation failure and spontaneous abortions. However, the effect of BaP on CL remains unknown. This study investigated the deleterious effects of BaP on the structure and function of CL during early pregnancy. Pregnant rats were dosed with BaP at 0.2 mg.kg-1. d from day 1 (D1) to day 9 (D9) of gestation. We found that BaP reduced the number of CLs, disturbed the secretion of steroid and impacted the luteal vascular networks. BaP significantly decreased the angiogenesis factor (VEGFR, Ang-1 and Tie2) and increased the anti-angiogenic factor THBS1. Inhibited THBS1 function by LSKL partially rescued the angiogenesis defect caused by BaP. In vitro, BaP metabolite BPDE also interfered the expression levels of angiogenesis-related factors in HUVECs and impaired the angiogenesis, whereas supplemented with rAng-1 can alleviate the anti-angiogenic effect of BPDE. Furthermore, Notch signaling molecules, including Notch1, Dll4, Jag1 and Hey2, which are essential for the establishment and maturation of vascular networks, were affected by BaP exposure. Collectively, BaP broke the molecular regulatory balance between luteal angiogenesis and vascular maturation, impaired the construction of luteal vascular networks, and further affected luteal formation and endocrine function during early pregnancy. Our findings might provide new insight into the relationship between BaP and luteal insufficiency in early pregnancy. These data also give a new line of evidence for curtailing BaP emissions and protecting the women of childbearing age from occupational exposure.


Assuntos
Benzo(a)pireno/toxicidade , Corpo Lúteo/efeitos dos fármacos , Exposição Ambiental/estatística & dados numéricos , Animais , Corpo Lúteo/fisiologia , Implantação do Embrião , Disruptores Endócrinos/toxicidade , Feminino , Gravidez , Progesterona , Ratos
20.
J Hazard Mater ; 389: 121830, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31836366

RESUMO

Cerium dioxide nanoparticles (CeO2NPs) has been widely used in many fields, and also recommended as a promising carrier for cancer targeted drugs in human medicine for its excellent properties. However, its biological safety to human health remains controversial. In this study, we propose a mouse model exposed to CeO2NPs during early pregnancy, to clarify the effect of maternal CeO2NPs exposure and related molecular mechanism. Pregnant mice are injected intravenously with CeO2NPs by once a day on D5, D6, and D7. The effects of CeO2NPs exposure on pregnancy outcomes are observed on D8, D9, D10 and D12. The results show that CeO2NPs exposure during early pregnancy would lead to poor pregnancy outcomes. Further study find that low-quality decidualization, including the imbalance of trophoblast invasion regulators secreted by decidual cells and abnormal recruitment and differentiation of uNK cells, leads to subsequent biological negative "ripple effects", including placental dysfunction, fetal loss or growth restriction. This study broadens the understanding of the biological safety of CeO2NPs, and provide clues for the prevention of its negative biological effects. Improving the function of uNK cells can be used as one of the therapeutic targets to prevent negative effects of CeO2NPs on pregnancy.


Assuntos
Cério/toxicidade , Exposição Materna/efeitos adversos , Nanopartículas/toxicidade , Placenta/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Cério/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Idade Gestacional , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , Tamanho da Partícula , Placenta/metabolismo , Placenta/patologia , Gravidez , Resultado da Gravidez , Propriedades de Superfície , Distribuição Tecidual , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia , Útero/irrigação sanguínea , Útero/metabolismo , Remodelação Vascular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA